首页> 外文OA文献 >The fine structure of spectral properties for random correlation matrices: an application to financial markets
【2h】

The fine structure of spectral properties for random correlation matrices: an application to financial markets

机译:随机相关矩阵的谱特性的精细结构:适用于金融市场

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We study some properties of eigenvalue spectra of financial correlation matrices. In particular, we investigate the nature of the large eigenvalue bulks which are observed empirically, and which have often been regarded as a consequence of the supposedly large amount of noise contained in financial data. We challenge this common knowledge by acting on the empirical correlation matrices of two data sets with a filtering procedure which highlights some of the cluster structure they contain, and we analyze the consequences of such filtering on eigenvalue spectra. We show that empirically observed eigenvalue bulks emerge as superpositions of smaller structures, which in turn emerge as a consequence of cross correlations between stocks. We interpret and corroborate these findings in terms of factor models, and we compare empirical spectra to those predicted by random matrix theory for such models.
机译:我们研究了金融相关矩阵特征值谱的一些性质。特别是,我们调查了经验值较大的特征值块的性质,这些特征值通常被认为是财务数据中包含大量噪声的结果。我们通过对两个数据集的经验相关矩阵进行滤波来突出显示它们所包含的某些聚类结构,从而挑战这些常识,并分析这种滤波对特征值谱的影响。我们表明,根据经验观察到的特征值体积会以较小结构的叠加形式出现,而这些结构又会由于股票之间的互相关而出现。我们用因子模型来解释和证实这些发现,并且将经验光谱与通过随机矩阵理论预测的那些光谱进行比较。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号